

Advanced Technical Skills (ATS) North America

IBM Smart Analytics Optimizer for DB2 for z/OS

SHARE - Session 8881

March 3, 2011

Bill Schray
IBM

Trademarks

The following are trademarks of the International Business Machines Corporation in the United States and/or other countries.

AlphaBlox* GDPS* RACF* APPN* **HiperSockets** Redbooks* Tivoli Storage Manager CICS* HyperSwap TotalStorage* Resource Link IBM* VSE/ESA CICS/VSE* **RETAIN*** Cool Blue VTAM* IBM eServer REXX DB2* IBM logo* **RMF** WebSphere* **DFSMS** IMS S/390* xSeries* **DFSMShsm** Language Environment* Scalable Architecture for Financial Reporting z9* **DFSMSrmm** Lotus* Sysplex Timer* z10 DirMaint Large System Performance Reference™ (LSPR™) Systems Director Active Energy Manager z10 BC DRDA* Multiprise* System/370 710 FC MVS System p* DS6000 z/Architecture* System Storage DS8000 OMEGAMON* zEnterprise ECKD System x* z/OS* Parallel Sysplex* System z ESCON* Performance Toolkit for VM z/VM* FICON* PowerPC* System z9* z/VSF PR/SM FlashCopy* System z10 zSeries* Processor Resource/Systems Manager

The following are trademarks or registered trademarks of other companies.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States, and/or other countries. Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the United States, other countries, or both and is used under license therefrom.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

ITIL is a registered trademark, and a registered community trademark of the Office of Government Commerce, and is registered in the U.S. Patent and Trademark Office.

IT Infrastructure Library is a registered trademark of the Central Computer and Telecommunications Agency, which is now part of the Office of Government Commerce.

Notes:

Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput that any user will experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput improvements equivalent to the performance ratios stated here. IBM hardware products are manufactured from new parts, or new and serviceable used parts, Regardless, our warranty terms apply.

All customer examples cited or described in this presentation are presented as illustrations of the manner in which some customers have used IBM products and the results they may have achieved. Actual environmental costs and performance characteristics will vary depending on individual customer configurations and conditions.

This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document in other countries, and the information may be subject to change without notice. Consult your local IBM business contact for information on the product or services available in your area.

All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.

Information about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM has not tested those products and cannot confirm the performance, compatibility, or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those

Prices subject to change without notice. Contact your IBM representative or Business Partner for the most current pricing in your geography.

^{*} Registered trademarks of IBM Corporation

^{*} All other products may be trademarks or registered trademarks of their respective companies.

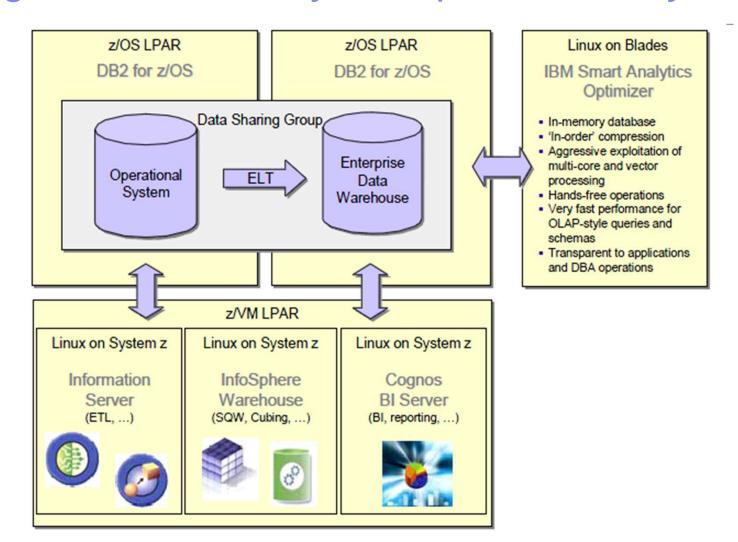
Agenda

Smart Analytics Optimizer Overview (quickly)

- Product Positioning
- Components
- Type of workloads that qualify
- Offerings

Beta Experiences

- Test databases
- Determining if queries ran on the accelerator
- Query performance
- DB2 data sharing



Smart Analytics Optimizer for System z

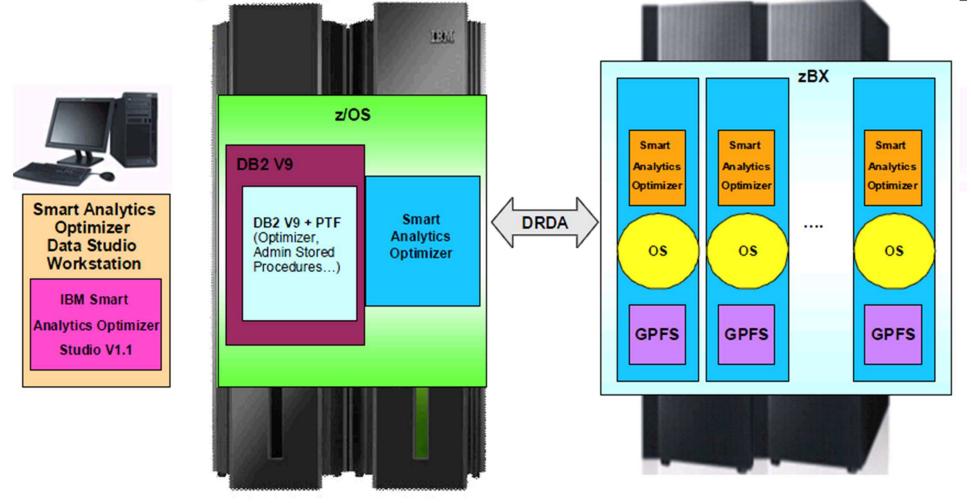
- An appliance for accelerating certain Data Warehouse and Business Intelligence queries dramatically
- Based on the Blink project in IBM's Research Division which developed technologies to accelerate processing of long-running online analytical processing (OLAP) queries by orders of magnitude.
 - Additional details can be found at http://www.almaden.ibm.com/cs/projects/blink/
- The Smart Analytics Optimizer design point is to execute queries that are typically found in business intelligence (BI) and data warehousing (DW) applications with fast and predictable response time

Adding the Smart Analytics Optimizer to System z

© 2011 IBM Corporation

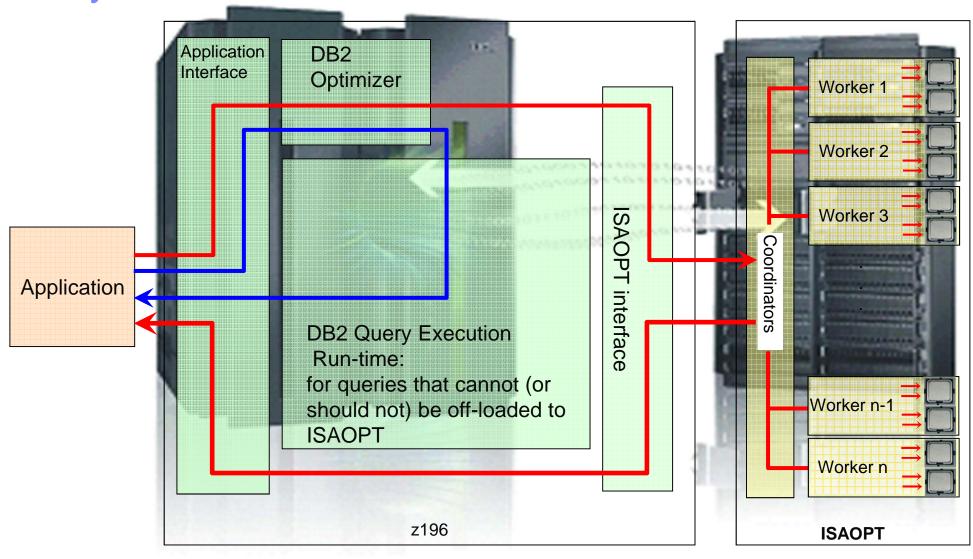
Components of Smart Analytics Optimizer Solution

- IBM Blade center(s) housed in System z BladeCenter Extension (zBX) frame attached to an IBM zEnterprise server
 - A closed platform that runs on the blades and includes an operating system and the IBM General Parallel File System V3.x (GPFS™).
- IBM software with installation features for simple initial deployment assisted by graphical tooling. This software is composed of three parts:
 - The unique code developed by IBM and named Smart Analytics Optimizer Application.
 - DB2 for z/OS Stored Procedures running on DB2 for z/OS V9 or above with PTF maintenance applied
 - IBM Smart Analytics Optimizer Studio. This Eclipsebased GUI runs on a workstation attached to System z and connected to DB2 for z/OS.



Smart Analytics Optimizer Blade Roles

- The Smart Analytics Optimizer automatically assigns roles to the zBX blades.
 - Coordinator node Accepts and queues work. Distributes and coordinates work for the worker nodes and forwards results to requester (DB2).
 - Worker node Processes the work requests from the coordinator node.
- While two blades on an extra small configuration and three blades on each blade center for small, medium, large, and extra large ISAO configurations are configured as coordinator blades, only one coordinator blade per blade center is required. The additional coordinator blades can be used to automatically replace failing worker or coordinator blades.


Smart Analytics Optimizer Software Layers

© 2011 IBM Corporation

Query Execution Process Flow

 \longrightarrow

Queries executed without ISAOPT

Queries executed with ISAOPT

Which types of workload qualify?

- Smart Analytics Optimizer V1 requirements for query block offload
 - Dynamic SQL
 - All tables referenced must be defined in one Data Mart
 - The query must reference a FACT table in the Data Mart
 - All columns referenced in the Select list, Where clause, On Clause, Group by clause, Order by Clause, and Having clause must be defined in a single Data Mart
 - -Join predicates must use the = comparison operator

Which types of workload qualify...?

- -Join type must be Inner or Left Outer Join
- No local filtering predicates on the non-surviving side of a Left Outer Join are permitted in the On clause
- Must not contain:
 - User defined functions
 - Mathematical functions (SIN, COS, TAN, EXP, etc.)
 - Character-wise string functions
 - Advanced string functions (LOCATE, LEFT, OVERLAY, POSITION, etc.)
 - Advanced OLAP functions (RANK, DENSE RANK, ROW NUMBER, ROLLUP, CUBE)
 - Certain Data Types (GRAPHIC, VARGRAPHIC, DECFLOAT, LOB, XML, binary types)

Query access path selection and processing

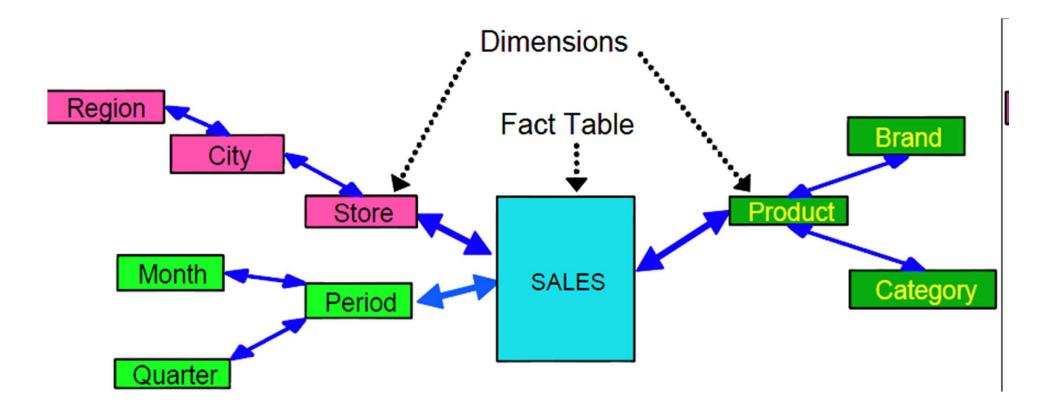
- Accelerator Data Marts are defined in the DB2 on z catalog as one or more Accelerator Query Tables (AQTs)
- The DB2 optimizer's consideration of the AQTs is very similar to the way DB2 considers MQTs, however the internal structure of the AQTs is quite different from the MQTs and is based on BLINK technology
- When AQTs are loaded on the accelerator
 - A single FACT table for each data mart is partitioned across the Worker Blades
 - The DIMENSION tables are replicated in their entirety on each Worker Blade

Query access path selection and processing...

- The Accelerator processes a single query block in parallel across all of the Worker Blades accessing compressed data in memory on each blade.
 - No access to the attached disk storage (5020) occurs during query processing, it is used for start-up and recovery only
 - Certain predicates are processed directly on compressed data in memory, others must de-compress the data in memory before processing the predicate
 - One query block per Coordinator node is processed at a time on the accelerator

Smart Analytics Optimizer Offerings

- For planning purposes, a 3X compression ratio is a reasonable assumption.
- Factors to keep in mind when considering required capacity
 - Only the tables and columns used by your longest running queries are required in the accelerator for query offload. However, future flexibility will be enhanced by including more columns from the tables defined in the data mart.
 - DIMENSION tables are stored in their entirety in each worker blade



Smart Analytics Optimizer Offerings

							Total	Memory available	
	Number	Number	Total	Number of	Number		Memory GB	for Data Mart data	Memory available for
Solution	of Blade	of zBX	Number	Coordinator	of Worker	Blade Fail-over	(48 GB per	GB(32 GB per	Data Mart data GB
Offering	Centers	racks	of blades	blade	blades	Capability	blade)	worker blade)	with 3X compression
A1-7	1	1	7	2	5	1	336	160	480
A1-14	1	1	14	3	11	2	672	352	1056
A1-28	2	1	28	6	22	5	1344	704	2112
A1-42	3	2	42	9	33	8	2016	1056	3168
A1-56	4	2	56	12	44	11	2688	1408	4224

Snow Flake Schema Fact and Dimension Tables

Internal Early Support Program – ISAOpt

Objectives

- Gain experience with Smart Analytics Optimizer
- Test drive installation process
- Report problems to ESP sponsors
- Provide feedback & "customer" perspective to development

Project team skills

- z/OS system programmer
- Hardware and facilities planning
- DB2 administrator
- Data warehouse expertise

Internal Early Support Program – ISAOpt

Status

- Installed ISAOpt on zBX model 002 in September 2010
- Available to DB2 on two z196 z/OS LPARs
- Running queries from two workloads on Smart Analytics Optimizer
 - Workload A: LineItem data model
 - Workload B: Store_Sales data model

Data Marts

- Data marts created and deployed using Smart Analytics
 Optimizer Studio
 - Select tables and columns included in the data mart

FACT table(s)

- Data mart must have a FACT table, usually the largest table
- Partitioned across worker blades (only for 1 FACT table per data mart)
- Query must reference a FACT table to be offloaded to optimizer

DIMENSION table(s)

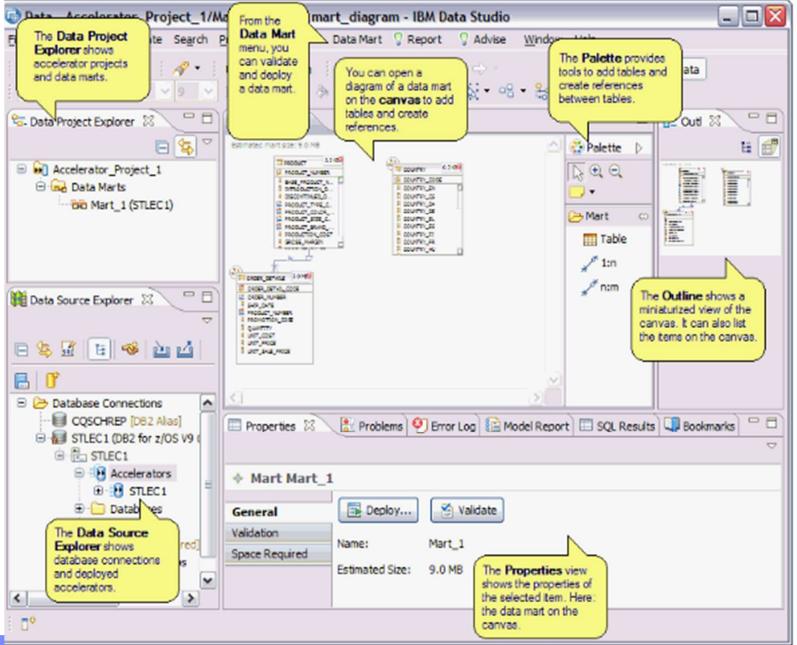

Each blade contains a copy of all of the DIMENSION tables

Table relationships

Defined relationships constrains the query joins that can be offloaded to the accelerator

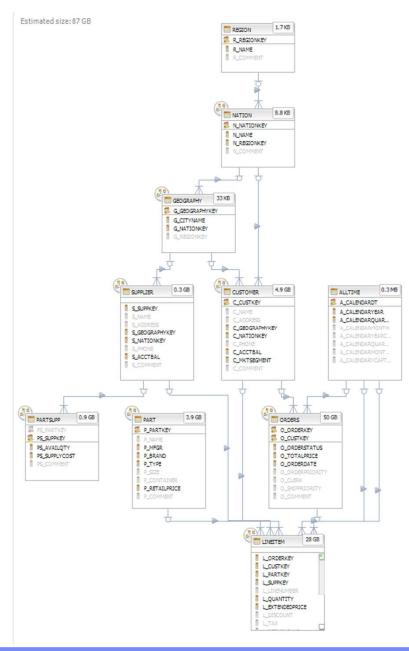
Smart Analytics Optimizer Studio

20 i © 2011 IBM Corporation

21

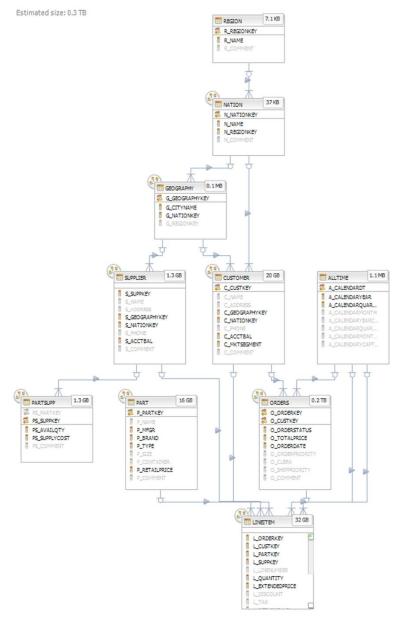
Workloads Used During Beta Testing

- Two different query workloads were created to test IBM
 Smart Analytics Optimizer acceleration capabilities which accessed two different data models
 - Workload A based on a 100GB version of the TPC-H data model
 - Workload B based on a 100GB version of the TPC-DS data model
- The query workloads used do not contain any of the benchmark queries associated with these data models.
- These performance tests were not official benchmarks and they did not adhere to the official benchmarks rules, nor have we submitted results to any formal review by the TPC board. We have constructed test workloads that access these readily available data bases.
- The query workloads will hereafter be referred to as 'workload A' and 'workload B' to distinguish them as clearly as possible from benchmark workloads.


Workload A Data Mart(s)

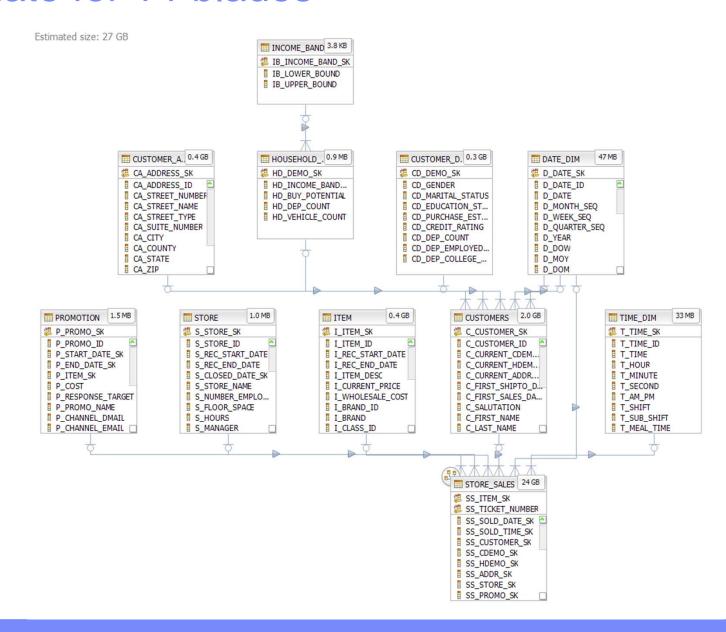
- The Workload A data model is not a star schema, but rather a relational schema like you would normally find in an ODS
- There are many of the queries in the test workload that would not offload to the accelerator because they did not reference the Lineitem table, the only default FACT table in this Data Mart definition.
- To allow all of the long running queries to offload to the accelerator, it was necessary to define additional FACT tables; tables that functioned as DIMENSION tables for some queries and as FACT tables for other queries
- This data mart scales poorly as the number of blade centers on the accelerator is increased. This behavior is caused by the distribution of data between FACT and DIMENSION tables in this data mart. The DIMENSION tables in this data mart contain 29% of the data in the data model.

Workload A LineItem Data Mart – Space estimate


for 14-blades

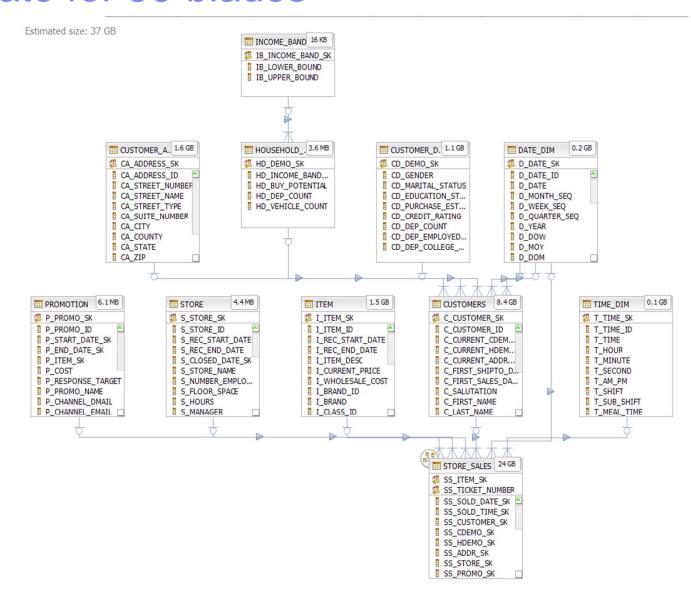
Workload A Lineltem Data Mart – Space estimate

for 56-blades



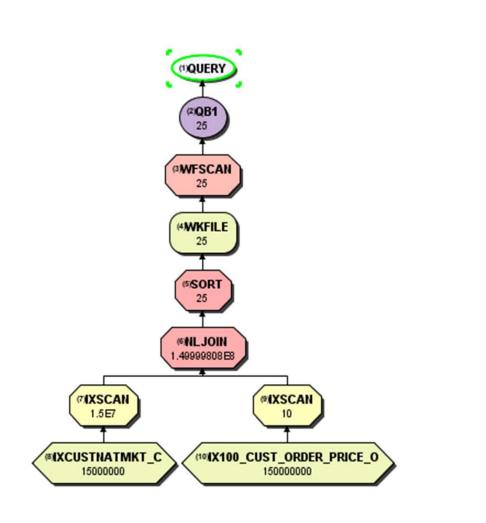
Workload B Store_Sales Data Mart

- The Workload B Store_Sales data model is a classic star schema which allows all of the 13 queries in my test workload to offload using a single Data Mart definition with a single FACT table.
- Since the DIMENSION tables only represent 3 % of the data in the data model, this data mart scales fairly linearly as the number of blade centers on the accelerator is increased.



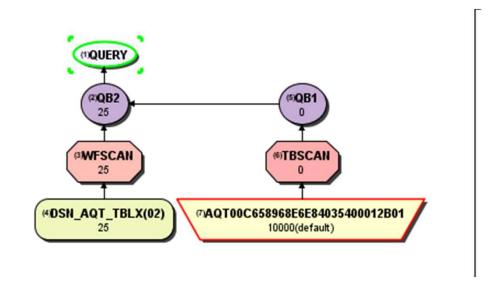
Workload B Store_Sales Data Mart – Space estimate for 14-blades

Workload B Store_Sales Data Mart – Space estimate for 56-blades



Determining if Queries will be offloaded

- Run DB2 EXPLAIN for the query with data mart defined on a real or virtual accelerator
 - If the PLAN_TABLE refers to AQT table(s), query block offload is expected
 - If query blocks do not offload, the new EXPLAIN table DSN_QUERYINFO_TABLE lists the reason the query block was not eligible for offload.
- If runtime errors occur while a query block is executing on the Accelerator, internal errors are reported in DB2 MSTR message log and the system log
 - Detailed error message explanation is written to IFCID
 191



Access Plan Graph with 'SET CURRENT REFRESH AGE 0;'

Access Plan Graph with 'SET CURRENT REFRESH AGE ANY;'

OMPE Accounting Report with Accelerator Offload

ELAPSED TIME D	ISTRIBUTION			CLASS	2 TIME DISTRIBU	JTION		
APPL DB2				CPU NOTAC	 :c			
SUSP ====	========			======> 100% SUSP		.=======		=======> 100 ⁹
TIMES/EVENTS			IFI (CL.5)	CLASS 3 SUSPENSIONS	ELAPSED TIME	EVENTS	HIGHLIGHTS	
ELAPSED TIME	31.086663	31.082156	N/P	LOCK/LATCH(DB2+IRLM)	0.000000	0	THREAD TYPE :	
NONNESTED	31.086663	31.082156	N/A	SYNCHRON. I/O	0.000000	0	TERM. CONDITION:	
STORED PROC	0.000000	0.000000	N/A	DATABASE I/O	0.000000	0	INVOKE REASON :	
UDF	0.000000	0.000000	N/A	LOG WRITE I/O	0.000000	0	COMMITS :	
TRIGGER	0.000000	0.000000	N/A	OTHER READ I/O	0.000000	0	ROLLBACK :	
			,	OTHER WRTE I/O	0.000000	0	SVPT REQUESTS :	
CP CPU TIME	0.003298	0.001531	N/P	SER.TASK SWTCH	31.079452	14	SVPT RELEASE :	
AGENT	0.003298	0.001531	N/A	UPDATE COMMIT	0.00000	0	SVPT ROLLBACK :	
NONNESTED	0.003298	0.001531	N/P	OPEN/CLOSE	0.000000	0	INCREM.BINDS :	0
STORED PRC	0.000000	0.000000	N/A	SYSLGRNG REC	0.000000	0	UPDATE/COMMIT :	0.00
UDF	0.000000	0.000000	N/A	EXT/DEL/DEF	0.000000	0	SYNCH I/O AVG.:	N/C
TRIGGER	0.000000	0.000000	N/A	OTHER SERVICE	31.079452	14	PROGRAMS :	1
PAR.TASKS	0.000000	0.000000	N/A	ARC.LOG(QUIES)	0.000000	0	MAX CASCADE :	0
				LOG READ	0.000000	0	PARALLELISM :	NO
IIPCP CPU	0.000000	N/A	N/A	DRAIN LOCK	0.000000	0		
				CLAIM RELEASE	0.000000	0		
IIP CPU TIME	0.000000	0.000000	N/A	PAGE LATCH	0.000000	0		
STORED PROC	0.000000	0.000000	N/A	NOTIFY MSGS	0.000000	0		
				GLOBAL CONTENTION	0.000000	0		
SUSPEND TIME	0.000000	31.079452	N/A	COMMIT PH1 WRITE I/O	0.000000	0		
AGENT	N/A	31.079452	N/A	ASYNCH CF REQUESTS	0.000000	0		
PAR.TASKS	N/A	0.000000	N/A	TCP/IP LOB	0.000000	0		
STORED PROC	0.000000	N/A	N/A	TOTAL CLASS 3	31.079452	14		
UDF	0.000000	N/A	N/A					
NOT ACCOUNT.	N/A	0.001173	N/A					
DB2 ENT/EXIT	N/A	52	N/A					
EN/EX-STPROC	N/A	0	N/A					
EN/EX-UDF	N/A	0	N/A					
DCAPT.DESCR.	N/A	N/A	N/P					
LOG EXTRACT.	N/A	N/A	N/P					
	••	•	•					

© 2011 IBM Corporation

Smart Analytics Optimizer Instrumentation

- DB2 commands to start, stop, and show status
 - DSNA Start Accel
 - DSNA Stop Accel
 - -DSNA Display Accel(*) [Detail]
- Instrumentation provided by Accelerator
 - New fields in DB2 SMF 100 and 101 records
 - Accelerator traces started in Smart Analytics Optimizer
 Studio

Output from "/-DSNA Display Accel(*) Detail"

NC0000000 SYSA	10213 07:30:37.76 SCHRAY	00000210	-DSNA DIS ACCEL(*) DETAIL			
NR0000000 SYSA	10213 07:30:37.76 STC16212	0000010	DSNX810I -DSNA DSNX8CMD DISPLAY ACCEL FOLLOWS -			
MR0000000 SYSA	10213 07:30:37.76 STC16212	0000010	DSNX830I -DSNA DSNX8CDA 689			
DR	689	0000010	ACCELERATOR MEMB STATUS REQUES	STS	QUED MAX	KQ FAIL
DR	689	0000010				
DR	689	0000010	ZBX1 DSNA STARTED	65	0	1 0
DR	689	0000010	PORT=1400 IPNAME=07C2C17D			
DR	689	0000010	IPADDR=10.9.130.1 HEALTHY			
DR	689	0000010	IPADDR=10.9.130.2 HEALTHY			
DR	689	0000010	DETAIL STATISTICS			
DR	689	0000010	LEVEL = AQT01010			
DR	689	0000010	STATUS = FULLY OPERATIONAL			
DR	689	0000010	~ ~ ~	=	0	
DR	689	0000010		=	1	
DR	689	0000010	PROCESSING CAPACITY	=	657139	
DR	689	0000010	TOTAL NUMBER OF PROCESSORS	=	112	
DR	689	0000010	AVERAGE CPU UTILIZATION ON COORDINATOR NODES	=	.629	8
DR	689	0000010	NUMBER OF ACTIVE COORDINATOR NODES	=	2	
DR	689	0000010	PHYSICAL MEMORY AVAILABLE ON COORDINATOR NODES	=	47180	MB
DR	689	0000010	PHYSICAL MEMORY AVERAGE USAGE ON COORDINATOR NODES	=	1094	MB
DR	689	0000010	AVERAGE CPU UTILIZATION ON WORKER NODES	=	.629	8
DR	689	0000010	NUMBER OF ACTIVE WORKER NODES	=	5	
DR	689	0000010	PHYSICAL MEMORY AVAILABLE ON WORKER NODES	=	39864	MB
DR	689	0000010	PHYSICAL MEMORY AVERAGE USAGE ON WORKER NODES	=	8410	MB
DR	689	0000010	SHARED MEMORY DATA AVAILABLE ON WORKER NODES	=	4290	MB
DR	689	0000010	SHARED MEMORY DATA AVERAGE USAGE ON WORKER NODES	=	27861	MB
DR	689	0000010	MAXIMUM SHARED MEMORY DATA IN USE ON WORKER NODES	=	27873	MB
ER	689	0000010	DISPLAY ACCEL REPORT COMPLETE			
NR0000000 SYSA	10213 07:30:37.76 STC16212	0000010	DSN9022I -DSNA DSNX8CMD '-DISPLAY ACCEL' NORMAL COMI	PLET	'ION	

© 2011 IBM Corporation

After Workload A execution

NR0000000 SYSA	10213 07:43:24.34 STC16212 00000010	DSNX810I -DSNA DSNX8CMD DISPLAY ACCEL FOLLOWS -
MR0000000 SYSA	10213 07:43:24.34 STC16212 00000010	DSNX830I -DSNA DSNX8CDA 821
DR		ACCELERATOR MEMB STATUS REQUESTS QUED MAXQ FAIL
DR	821 00000010	
DR	821 00000010	ZBX1 DSNA STARTED 89 0 1 0
DR	821 00000010	PORT=1400 IPNAME=07C2C17D
DR	821 00000010	IPADDR=10.9.130.1 HEALTHY
DR	821 00000010	IPADDR=10.9.130.2 HEALTHY
DR	821 00000010	DETAIL STATISTICS
DR	821 00000010	LEVEL = AQT01010
DR	821 00000010	STATUS = FULLY OPERATIONAL
DR	821 00000010	
DR	821 00000010	MAXIMUM QUEUE WAIT = 1 PROCESSING CAPACITY = 657139
DR	821 00000010	PROCESSING CAPACITY = 657139
DR	821 00000010	TOTAL NUMBER OF PROCESSORS = 112
DR	821 00000010	AVERAGE CPU UTILIZATION ON COORDINATOR NODES = .00%
DR	821 00000010	NUMBER OF ACTIVE COORDINATOR NODES = 2
DR	821 00000010	PHYSICAL MEMORY AVAILABLE ON COORDINATOR NODES = 47181 MB
DR	821 00000010	PHYSICAL MEMORY AVERAGE USAGE ON COORDINATOR NODES = 1093 MB
DR	821 00000010	AVERAGE CPU UTILIZATION ON WORKER NODES = .00%
DR	821 00000010	NUMBER OF ACTIVE WORKER NODES = 5
DR	821 00000010	PHYSICAL MEMORY AVAILABLE ON WORKER NODES = 39864 MB
DR	821 00000010	PHYSICAL MEMORY AVERAGE USAGE ON WORKER NODES = 8410 MB
DR	821 00000010	SHARED MEMORY DATA AVAILABLE ON WORKER NODES = 4290 MB
DR	821 00000010	SHARED MEMORY DATA AVERAGE USAGE ON WORKER NODES = 27861 MB
DR	821 00000010	MAXIMUM SHARED MEMORY DATA IN USE ON WORKER NODES = 27873 MB
ER	821 00000010	DISPLAY ACCEL REPORT COMPLETE
NR0000000 SYSA	10213 07:43:24.34 STC16212 00000010	DSN9022I -DSNA DSNX8CMD '-DISPLAY ACCEL' NORMAL COMPLETION

© 2011 IBM Corporation

How Can We Determine How Many Queries Executed Successfully on the Accelerator?

- From the previous two accelerator displays, we can tell that 24 of the 26 (89 – 65) of the Workload A queries completed successfully on the accelerator
- For each individual job step, we could determine from an OMPE trace which of the queries ran successfully on the accelerator
- When queries are expected to run on the accelerator from EXPLAIN results but do not successfully run on the accelerator, how do we tell what internal errors occurred?

Smart Analytics Optimizer Internal Error Debugging

System LOG error message (also found in the DB2 MSTR started task)

DSNX871I -DSNA DSNX8DJN DRDA EXCEPTION CONDITION IN 489
RESPONSE FROM ACCELERATOR=ZBX1 FOR THREAD WITH
LUWID=USIBMWZ.DSNAAPPL.C6364562E46A=0
REASON=00E7000A
ERROR ID=DSNX8OPQ0005
CORRELATION ID=TPCHQ01
CONNECTION ID=BATCH
IFCID=0191
SEE TRACE RECORD WITH IFCID SEQUENCE
NUMBER=00000077

OMPE RECTRACE of IFCID 191

SCHRAY	BATCH	C636336	72040 'BLA	NK '	'BLANK'			'BLANK'			
SCHRAY	TCPDSQ	10 TSO	08:51	:26.890951	59 171408	3 191 DDM	LEVEL 6B	NETWORKI	D: USIBMWZ	LUNAME: DSNAA	PPL LUWSEQ: 1
DSNTEP91	'BLANK	'	N/P			OB	JECTS				
	0000	00F50000	C4D9C4C1	F0F1F9F1	E9C2E7F1	40404040	40404040	40404040	40400001	.5DRDA0191ZBX	1
	0020	00000000	0000000	0000000	00E7F803	C4E2D5E7	F8D9D7C1	0071C4E2	D5E7F8D9	X8	.DSNX8RPADSNX8R
	0040	D7C1F0F0	F7F1200D	D7F10000	0000000	00000000	00000000	0000000	00000000	PA0071P1	
	0060	00040202	05060600	02010000	0000000	00000000	00000000	0000C4D9	C4C1D9D7		DRDARP
	0800	D3E8C4D9	C4C1E2E4	C3C31233	00010000	00AC0000	00000000	0000000	00000000	LYDRDASUCC	
	00A0	00000000	0000000	00000000	0000C4D9	C4C1D9D7	E840003F	D0020005	00391233		RDARPY}
	00C0	002F1153	E3888540	81838385	93859981	A3969940	83819540	9596A340	88819584	The acceler	ator can not hand
	00E0	93854094	96998540	98A48599	8985A200	06114900	08		j	le more queries	

© 2011 IBM Corporation

Performance Measurements

- The Smart Analytics Optimizer Beta performance measurements that follow should be considered in the following context:
 - The actual performance that any user will experience will vary depending upon considerations such as the amount of data on each blade in the AQT table being referenced. Therefore, no assurance can be given that an individual user will achieve response time improvements equivalent to those stated here.
 - Queries built for the two data models to exercise the Smart Analytics Optimizer during Beta testing were designed to be likely to offload to the accelerator. The queries referred to in this presentation are presented as illustrations of the manner in which response time would be enhanced when queries qualify to offload to the accelerator. Actual query workloads may offload at substantially different rates depending on the degree to which the queries meet first release requirements for query block offload.
 - This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document in other countries, and the information may be subject to change without notice. Consult your local IBM business contact for information on the product or services available in your area.

Workload A Query Performance

	Current Refres	h Age 0	Current Re		
					ET_secs
			ET secs	CP secs on	Acceleration
StepName	ET Secs on z	CP secs on z	on ISAO	ISAO	Factor
WorkloadA-Q01	254.20	902.75	2.19	0.02	116.07
WorkloadA-Q02	14.19	7.01	0.39	0.01	36.38
WorkloadA-Q03	10.11	11.71	0.42	0.01	24.07
WorkloadA-Q04	58.23	162.31	0.73	0.01	79.77
WorkloadA-Q05	40.81	129.89	6.53	0.01	6.25
WorkloadA-Q06	19.84	6.35	0.72	0.02	27.56
WorkloadA-Q07	20.08	43.54	1.68	0.01	11.95
WorkloadA-Q08	13.73	0.07	0.39	0.01	35.21
WorkloadA-Q09	7.52	0.76	0.54	0.01	13.93
WorkloadA-Q10	56.18	216.25	6.61	0.01	8.50
WorkloadA-Q11	3.88	2.73	0.41	0.01	9.46
WorkloadA-Q12	0.65	0.01	0.38	0.01	1.71
WorkloadA-Q13	952.27	3210.91	0.80	0.02	1190.34
WorkloadA-Q14	1014.21	3301.59	0.81	0.02	1252.11
WorkloadA-Q15	848.29	880.83	0.91	0.03	932.19
WorkloadA-Q16	1716.52	806.00	1.31	0.01	1310.32
WorkloadA-Q17	1758.42	951.95	2.82	0.01	623.55
WorkloadA-Q18	539.32	1079.47	81.03	0.02	6.66
WorkloadA-Q19	102.85	5.99	2.16	0.02	47.62
WorkloadA-Q20	334.18	70.27	5.04	0.02	66.31
WorkloadA-Q21	1281.22	2461.69	1.12	0.02	1143.95
WorkloadA-Q22	402.49	102.23	1.09	0.01	369.26
WorkloadA-Q23	282.71	541.02	0.54	0.01	523.54
WorkloadA-Q24	871.91	1612.62	0.78	0.02	1117.83
WorkloadA-Q25	900.23	1637.07	0.93	0.01	967.99
WorkloadA-Q26	28.82	26.85	1.80	0.01	16.01

Workload B Query Performance

	Current Refresh A	ge 0	Current Refres		
StepName	ET Secs on z			CP secs on ISAO	ET_secs Acceleration Factor
WokrloadB-Q01	41.63	150.75	1.91	0.02	21.80
WokrloadB-Q02	493.98	925.28	2.87	0.02	172.12
WokrloadB-Q03	41.21	158.48	2.43	0.02	16.96
WokrloadB-Q04	379.04	1308.27	1.44	0.01	263.22
WokrloadB-Q05	14.92	4.91	0.75	0.02	19.89
WokrloadB-Q06	218.87	822.69	1.51	0.01	144.95
WokrloadB-Q07	214.79	787.24	1.52	0.01	141.31
WokrloadB-Q08	346.66	729.83	1.65	0.01	210.10
WokrloadB-Q09	705.81	1182.05	2.90	0.01	243.38
WokrloadB-Q10	790.95	1578.70	2.86	0.02	276.56
WokrloadB-Q11	890.69	194.10	1.76	0.02	506.07
WokrloadB-Q12	991.07	1245.95	3.54	0.01	279.96
WokrloadB-Q13	187.89	706.11	0.73	0.01	257.38

39 © 2011 IBM Corporation

DB2 Data Sharing

- Testing took place using 1 DB2 data sharing group
- Two z196 LPARs on a single CEC each contained one DB2 data sharing member, DSNA & DSNB
- The Smart Analytics Optimizer was installed on DSNA on SYSA, but was available to both data sharing members
- To test access from both data sharing members to the accelerator, multiple jobs each containing multiple SQL steps were submitted on LPARs SYSA and SYSB at the same time.

DB2 Data Sharing...

- Queries from both DSNA and DSNB were offloaded to the accelerator and interspersed in the accelerator queue
- Since the accelerator processes only one Query block per Coordinator blade at a time, the other Queries from the multiple jobs queued on the accelerator waiting to execute
- When the queue length exceeded a threshold, additional queries arriving at the accelerator received an internal error and then executed on z
- Subsequent job steps after executing on z ran on the accelerator as long as the queue length did exceed the threshold

